skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sutter, Eli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The integration of dissimilar materials into heterostructures is a mainstay of modern materials science and technology. An alternative strategy of joining components with different electronic structure involves mixed‐dimensional heterostructures, that is, architectures consisting of elements with different dimensionality, for example, 1D nanowires and 2D plates. Combining the two approaches can result in hybrid architectures in which both the dimensionality and composition vary between the components, potentially offering even larger contrast between their electronic structures. To date, realizing such heteromaterials mixed‐dimensional heterostructures has required sequential multi‐step growth processes. Here, it is shown that differences in precursor incorporation rates between vapor–liquid–solid growth of 1D nanowires and direct vapor–solid growth of 2D plates attached to the wires can be harnessed to synthesize heteromaterials mixed‐dimensional heterostructures in a single‐step growth process. Exposure to mixed GeS and GeSe vapors produces GeS1−xSexvan der Waals nanowires whose S:Se ratio is considerably larger than that of attached layered plates. Cathodoluminescence spectroscopy on single heterostructures confirms that the bandgap contrast between the components is determined by both composition and carrier confinement. These results demonstrate an avenue toward complex heteroarchitectures using single‐step synthesis processes. 
    more » « less